

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING PULCHOWK CAMPUS

REPORT ON STATIC ANALYSIS OF BIKE CHASSIS.

Prepared By: Sandip Poudel (075Bme039)

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERINGLALITPUR, NEPAL

AUGUST, 2022

TABLE OF CONTENTS

TITLE PAGE
TABLE OF CONTENTS2
LIST OF FIGURES
LIST OF TABLES
ABSTRACT
1. INTRODUCTION
2. CAD MODEL:
3. STRUCTURAL ANALYSIS OF BIKE CHASSIS:7
3.1. LOADING CONDITIONS7
3.2. Static Structural
4. Results10
4.1. Mesh
4.2. Total Deformation
4.3. Maximum Principal Stress14
4.4. Maximum Shear Stress15
4.5. Equivalent Stress
4.6. Strain Energy17
4.7. Equivalent Elastic Strain18
4.8. Safety Factor19
4.9. Harmonic Response
5. Material Data
6. CONCLUSION:

LIST OF FIGURES

6
7
9
9
9
11
13
14
15
16
17
18
19
21

LIST OF TABLES

Table 1Loads	8
Table 2Geometry	10
Table 3Geometry	12
Table 4Total Deformation	13
Table 5Maximum Principal Stress	14
Table 6Maximum Shear Stress	15
Table 7Equivalent Stress	16
Table 8Strain Energy	17
Table 9Equivalent Elastic Strain	18
Table 10Safety Factor	19
Table 11 Safety Tools	20
Table 12 Stress Tool	20
Table 13Harmonic Response on Loads at seat	21
Table 14Harmonic Response Solution Results	22
Table 15 Structural Steel Constants	22
Table 16Structural Steel Color	23
Table 17Structural Steel Compressive Ultimate Strength	23
Table 18Structural Steel Compressive Yield Strength	23
Table 19Structural Steel Tensile Yield Strength	23
Table 20Structural Steel Tensile Ultimate Strength	23
Table 21 Structural Steel Isotropic Secant Coefficient of Thermal Expansion	23
Table 22Structural Steel S-N Curve	24
Table 23Structural Steel Strain-Life Parameters	24
Table 24Structural Steel Isotropic Elasticity	24
Table 25Structural Steel Isotropic Relative Permeability	25

ABSTRACT

The chassis frame forms the backbone of a vehicle, its principle function is to safely carry the maximum load for all designed operating conditions. Automotive chassis is the main carriage system of a vehicle. The chassis serves as a skeleton upon which parts like gearbox and engine are mounted. The twowheeler chassis consists of a frame, suspension, wheels and brakes. The chassis is what truly sets the overall style of the two wheeler. Commonly used material for two-wheeler chassis is steel which is heavy in weight or more accurately in density. There are various alternate materials like aluminum alloys, titanium, carbon fiber, magnesium, etc. which are lesser in weight and provide high strength and thus can be used for chassis. This report deals with the design of two-wheeler chassis frame. The static loading was carried out on the chassis and the design is improving the mechanical behavior of the chassis The modeling work was carried out by the CATIA V5 and analysis was done by ANSYS software. The modeling would consider the geometry characteristics and analysis would consider the geometry import, meshing, loading condition, result evaluation. Where geometry import IGS file format was followed.

1. INTRODUCTION

Whenever to build a motorcycle, the frame determines the basic look of the bike. Of course motorcycle frames affect not only the appearance of the bike but the handling and safety of the finished machine. Frames are the basic skeleton to which other components are attached. They hold the motorcycle tanks and engine and provide support to the whole bike. Motorcycle frames are usually made from welded aluminium, steel or alloy, carbon-fiber is used in some expensive or custom frames. The purpose of a motorcycles frame is to act as a base on which all the various components can be bolted. The engine generally sits inside the frame, the rear swing arm is attached by a pivot bolt (allowing the suspension to move) and the front forks are attached to the front of the frame. The frame can also help to protect the more sensitive parts of a motorcycle in a crash. A motorcycle frame includes the head tube that holds the front fork and allows it to pivot. Some motorcycles include the engine as a load-bearing, stressed member. The rear suspension is an integral component in the design. Traditionally frames have been steel, but titanium, aluminium, magnesium, and carbon-fiber, along with composites of these materials, have been used. Because of different motorcycles' varying needs of cost, complexity, weight distribution, stiffness, power output and speed, there is no single ideal frame design.

2. CAD MODEL:

CAD model of existing chassis has been prepared in CATIA V5 as shown in fig.the dimensions were measured from existing chassis by reverse engineering.

Figure 1 Cad Model

3. STRUCTURAL ANALYSIS OF BIKE CHASSIS:

A general-purpose commercial finite element code, Hyper-Mesh and ANSYS is applied to conduct the static simulations. A full 3-D solid model is constructed for the static test simulation. Mixed type of elements which contain quadrilateral as well as triangular elements, have been used in analysis. These 2D elements are converted into 3D tetra elements. The sensitive regions have been re-meshed manually considering the shape and size of the parts. From the analysis the maximum principle stress and total deformation were determined and are shown. Table 13 shows the Material properties of steel.

3.1.LOADING CONDITIONS

The portion of the handle in front is made fixed (as shown in figure 2 by blue color) and then various loads are applied as shown in figure 2 and the analysis was done.

Figure 2 Loading Conditions

3.2.Static Structural

Object Name	Fixed Support	Force	Remote Force	Remote Force 2
State	Fully Defined			
Scope				
Scoping Method	Geometry S	Selection		
Geometry	1 Face			
Object Name	Fixed Support	Force	Remote Force	Remote Force 2
State	Fully Defir	ned		
Scope				
Coordinate System			Global Coordina	ate System
X Coordinate			1.1833e-008 cm	8.1942e-017 cm
Y Coordinate			16.742 cm	10.583 cm
Z Coordinate			0.353 cm	56.008 cm
Location			Defined	
Definition				
Туре	Fixed Support	Force	Remote Force	
Suppressed	No			
Define By		Components	1	
Applied By		Surface Effect		
Coordinate System		Global Coordinate System		
X Component		0. dyne (ramped)		
Y Component	0. dyne (ramped)			
Z Component		-1.e+008 dyne (ramped)	-2.e+007 dyne (ramped)	-1.e+007 dyne (ramped)
Behavior	Deformable			
Advanced				
Pinball Region			All	

Table 1Loads

Figure 3Force

Figure 4Remote Force

4. Results

Object Name	Total Deformation	Maximum Principal Stress	Maximum Shear Stress	Equivalent Stress	Strain Energy	Equivalent Elastic Strain
State	Solved					
Scope						
Scoping Method	Geometry Se	lection				
Geometry	All Bodies					
Definition						
Туре	Total Deformation	Maximum Principal Stress	Maximum Shear Stress	Equivalent (von-Mises) Stress	Strain Energy	Equivalent Elastic Strain
By	Time					
Display Time	Last					
Calculate Time History	Yes					
Suppressed	No					
Results						
Minimum	0. cm	- 1.1294e+010 dyne/cm ²	0.16492 dyne/cm²	0.29296 dyne/cm²	3.8603e-015 erg	6.9901e- 013 cm/cm
Maximum	27.935 cm	5.8874e+010 dyne/cm ²	2.7718e+010 dyne/cm ²	5.103e+010 dyne/cm ²	3.9272e+007 erg	3.0693e- 002 cm/cm
Average	15.81 cm	3.491e+008 dyne/cm ²	3.4117e+008 dyne/cm ²	6.4549e+008 dyne/cm ²		3.6262e- 004 cm/cm
Minimum Occurs On	chasis-FreeParts Brep With Voids					
Maximum Occurs On	chasis-FreeParts Brep With Voids					
Total					1.1803e+009 erg	

Table 2Geometry

4.1.Mesh

Figure 6Mesh

Definition	
Suppressed	No
Stiffness Behavior	Flexible
Coordinate System	Default Coordinate System
Reference Temperature	By Environment
Treatment	None
Material	
Assignment	Structural Steel
Nonlinear Effects	Yes
Thermal Strain Effects	Yes
Properties	
Volume	1218. cm ³
Mass	9561.2 g
Centroid X	-3.2211e-004 cm
Centroid Y	41.807 cm
Centroid Z	36.673 cm

Moment of Inertia Ip1	2.0685e+007 g⋅cm ²
Moment of Inertia Ip2	5.3207e+006 g⋅cm ²
Moment of Inertia Ip3	1.6834e+007 g⋅cm ²
Statistics	
Nodes	78812
Elements	39598

Table 3Geometry

4.2.Total Deformation

Figure 7Total Deformation

Time [s]	Minimum [cm]	Maximum [cm]	Average [cm]
1.	0.	27.935	15.81

Table 4Total Deformation

4.3. Maximum Principal Stress

Figure 8Maximum Principal Stress

Time [s]	Minimum [dyne/cm ²]	Maximum [dyne/cm ²]	Average [dyne/cm ²]
1.	-1.1294e+010	5.8874e+010	3.491e+008

Table 5Maximum Principal Stress

4.4. Maximum Shear Stress

Figure 9Maximum Shear Stress

Time [s]	Minimum [dyne/cm ²]	Maximum [dyne/cm ²]	Average [dyne/cm ²]
1.	0.16492	2.7718e+010	3.4117e+008

Table 6Maximum Shear Stress

4.5.Equivalent Stress

Figure 10Equivalent Stress

Time [s]	Minimum [dyne/cm ²]	Maximum [dyne/cm ²]	Average [dyne/cm ²]
1.	0.29296	5.103e+010	6.4549e+008

Table 7Equivalent Stress

4.6.Strain Energy

Figure 11Strain

Time [s]	Minimum [erg]	Maximum [erg]	Total [erg]
1.	3.8603e-015	3.9272e+007	1.1803e+009

Table 8Strain Energy

4.7. Equivalent Elastic Strain

Figure 12Equivalent Elastic Strain

-	Time [s]	Minimum [cm/cm]	Maximum [cm/cm]	Average [cm/cm]
	1.	6.9901e-013	3.0693e-002	3.6262e-004

Table 9Equivalent Elastic Strain

4.8.Safety Factor

Figure 13Safety Factor

Time [s]	Minimum	Maximum	Average
1.	4.8991e-002	15.	10.054

Table 10Safety Factor

Object Name	Stress Tool	
State	Solved	
Definition		
Theory	Max Equivalent Stress	
Stress Limit Type	Tensile Yield Per Material	

Table 11 Safety Tools

Object Name	Safety Factor
State	Solved
Scope	
Scoping Method	Geometry Selection
Geometry	All Bodies
Definition	
Туре	Safety Factor
Ву	Time
Display Time	Last
Calculate Time History	Yes
Identifier	
Suppressed	No
Integration Point Resu	llts
Display Option	Averaged
Average Across Bodies	No
Results	
Minimum	4.8991e-002
Minimum Occurs On	chasis-FreeParts Brep With Voids
Information	
Time	1. s
Load Step	1
Substep	1
Iteration Number	1

Table 12 Stress Tool

4.9. Harmonic Response

Harmonic Response of the chassis was done by fixing handle portion as same in other analysis and load was just applied in the seat considering the force due to the applied load and the result is found to be as below.

Object Name	Force		
State	Fully Defined		
	Scope		
Scoping Method	Geometry Selection		
Geometry	1 Face		
Definition			
Туре	Force		
Define By	Components		
Applied By	Surface Effect		
Coordinate System	Global Coordinate System		
X Component	0. N		
Y Component	0. N		
Z Component	-800. N		
X Phase Angle	0. °		
Y Phase Angle	0. °		
Z Phase Angle	0. °		
Suppressed	No		

Table 13Harmonic Response on Loads at seat

Figure 14 Harmonic Response Solution

Object Name	Total Deformation	Maximum Principal Elastic Strain		
State	Solved			
Scope				
Scoping Method	Ge	eometry Selection		
Geometry		All Bodies		
	Definition	n		
Туре	Total Deformation	Maximum Principal Elastic Strain		
By		Frequency		
Frequency	Last			
Amplitude	No			
Sweeping Phase	0. °			
Identifier	Identifier			
Suppressed	No			
Results				
Minimum	2.8095e-011 m -8.1773e-008 m/m			
Maximum	6.194e-007 m	6.7067e-006 m/m		
Average	3.5218e-008 m	1.9526e-007 m/m		
Minimum Occurs On	chasis-Fr	eeParts Brep With Voids		
Maximum Occurs On	chasis-Fr	eeParts Brep With Voids		
	Informatio)n		
Reported Frequency	y 10000 Hz			
	Integration Point	t Results		
Display Option		Averaged		
Average Across Bodies		No		

Table 14Harmonic Response Solution Results

5. Material Data

Structural Steel

Density	7.85 g cm^-3
Coefficient of Thermal Expansion	1.2e-005 C^-1
Specific Heat	4.34e+006 erg g^-1 C^-1
Thermal Conductivity	0.605 W cm^-1 C^-1
Resistivity	1.7e-005 ohm cm

Table 15 Structural Steel Constants

Red	Green	Blue
132	139	179

Table 16Structural Steel Color

Compressive Ultimate Strength dyne cm⁻²

Table 17Structural Steel Compressive Ultimate Strength

Compressive Yield Strength dyne cm⁻² 2.5e+009

Table 18Structural Steel Compressive Yield Strength

Tensile Yield Strength dyne cm⁻² 2.5e+009

Table 19Structural Steel Tensile Yield Strength

Tensile Ultimate Strength dyne cm⁻² 4.6e+009

Table 20Structural Steel Tensile Ultimate Strength

Zero-Thermal-Strain Reference Temperature C 22

Table 21 Structural Steel Isotropic Secant Coefficient of Thermal Expansion

Alternating Stress dyne cm ⁻²	Cycles	Mean Stress dyne cm ⁻²
3.999e+010	10	0
2.827e+010	20	0
1.896e+010	50	0
1.413e+010	100	0
1.069e+010	200	0
4.41e+009	2000	0
2.62e+009	10000	0
2.14e+009	20000	0
1.38e+009	1.e+005	0
1.14e+009	2.e+005	0
8.62e+008	1.e+006	0

Table 22Structural Steel S-N Curve

Strength Coefficient dyne cm^-2	Strength Exponent	Ductility Coefficient	Ductility Exponent	Cyclic Strength Coefficient dyne cm^-2	Cyclic Strain Hardening Exponent
9.2e+009	-0.106	0.213	-0.47	1.e+010	0.2

Table 23Structural Steel Strain-Life Parameters

Young's Modulus dyne cm^-2	Poisson's Ratio	Bulk Modulus dyne cm^-2	Shear Modulus dyne cm^-2	Temperature C
2.e+012	0.3	1.6667e+012	7.6923e+011	

Table 24Structural Steel Isotropic Elasticity

Relative Permeability
10000

Table 25Structural Steel Isotropic Relative Permeability

6. CONCLUSION:

Hence structural analysis of the Stainless steel has be done by using stainless steel using ANSYS software. From the result it is observed that the stresses are maximum at the joint location and also for all the materials the stress value values are less that their permissible yields stress values. So the design is safe. Stainless steel materials is also cheap in cost, so this is the best suitable material for chassis frame and is expected to perform better with satisfying amount of weight reduction